

Computational Intelligence for Industrial and Environmental Applications

Vincenzo Piuri, Fabio Scotti University of Milan

IS 2016 – 5 September 2016

Summary

- 1. Introduction to industrial and environmental applications
- 2. Computational intelligence in industrial and environmental applications
- 3. Intelligent monitoring and control systems design methodology
 - Computational intelligence for *sensors*
 - Signal *preprocessing*
 - Feature extraction and selection
 - Computational intelligence for *data fusion*
 - Computational intelligence for *classification* and *quality measurement*
 - Computational intelligence for system optimization
- 4. Conclusions

Industrial Applications

Manufacturing Process

Quality Control

Environmental Applications

Monitoring Systems

Industrial and Environmental Analysis

 Boring, repetitive, exhausting and dangerous for human operators

A computer does not get tired

Automatic Monitoring and Control Systems

AccurateOften non invasiveStandardized

Automatic Monitoring and Control Systems

Signal and image acquisition and preprocessing

Technologies for Monitoring and Control Systems

- Sensors and measurement systems
- Signal processing
- Image processing
- Sensor data fusion
- Classification and clustering

Conventional Algorithmic Techniques

Computational complexity

Require a modelNot able to learn from experience

Computational Intelligence in Monitoring and Control Systems

Evolutionary Computing

Composite Systems

TRADITIONAL PARADIGMS + COMPUTATIONAL INTELLIGENCE =

+ MORE DESIGN DEGREES OF FREEDOM
+ ACCURACY
+ PERFORMACE

The Main Problem

Tackling very different aspects at the same time:

- instrumentation and measurement systems
- image and signal processing.
- feature extraction
- sensor fusion
- system modeling
- data analysis
- classification

How to Deal with Heterogeneous Aspects?

Nowadays:

Separate issuesModule-oriented solutionsAd-hoc solutions

Limited optimizationLimited reusabilityLimited integrability

A Comprehensive Design Approach

Design methodology

Manufacturing Applications Design Methodology for Intelligent Monitoring and Control Systems

- A. Signal and image acquisition
- B. Signal and image preprocessing
- c. Feature extraction and selection
- D. Data fusion
- E. Classification and quality measurement

F. Control

G. System optimization

A. Signal and Image Acquisition

- Conventional techniques:
 - sensor enhancement
 - sensor linearization
 - sensor diagnosis
 - sensor calibration

Computational intelligence approaches
 self-calibration
 non-linearities reduction
 Error and faults detection

B. Signal Preprocessing

 Signal preprocessing: enhancing the signals and correcting the errors
 Features processing: extract from the input signals a set of features

Neural and fuzzy techniques
 for signal and feature processing:
 Adaptivity, intelligence, learning from examples, ...

C. Feature Extraction and Selectiton

How many features?

Pork samples	460 nm (blue)	580 nm (green)	720nm (red)

Selection, Extraction, Selection and Extraction

Feature Extraction Algorithms

- Principal Component Analysis
- Linear Discriminat Analysis
- Independent Component Analysis
- Kernel PCA
- PCA network
- Nonlinear PCA
- Feed-Forward Neural Networks
- Nonlinear autoassociative network
- Multidimensional Scaling
- Self-Organizing Map (MAP)

Feature Selection Algorithms

- **Exhaustive Search**
- Branch and Bound
- Sequential Forward Selection
- Sequential Backward Selection
- Sequential Floating Search methods

D. Computational Intelligence for Data Fusion

Fuse the available features/sensors signals to obtain more meaningful information

E. Computational Intelligence for Classification, Clustering and Pattern Recognition

F. Control

 Neural-based control to capture the desired behavior through examples

 Fuzzy-based control to capture non-crisp definition of quantities

G. System Optimization

System parameters difficult to fix

Very often *trial-and-error approaches*

Evolutionary computation techniques
 can solve this optimization task

Conclusions

- Monitoring and control are critical for advanced manufacturing processes and for maintaining an economical leading role
- Monitoring is critical for advanced environmental applications and ensure a sustainable environment
- A comprehensive design methodology should deal with all aspects in an integrated way
- Computational intelligence offer additional opportunities for adaptable and evolvable systems

